기존 기술 대비 최대 74% 향상된 복원 정확도 달성
소셜 네트워크 분석, 생명과학, 뇌과학 등 다양한 분야에의 활용 기대

▲ 다자 간 관계를 추적·복원하는 AI‘마리오’개발한 KAIST 연구팀. KAIST 제공

KAIST는 김재철AI대학원의 신기정 교수 연구팀이 저차원 상호작용 정보만으로 고차원 상호작용 구조를 높은 정확도로 복원할 수 있는 인공지능 기술인 ‘마리오(이하 MARIOH, Multiplicity-Aware Hypergraph Reconstruction)’를 개발했다고 5일 밝혔다.

고차원 상호작용 복원이 어려운 이유는 동일한 저차원 상호작용 구조로부터 파생될 수 있는 고차원 상호작용의 가능성이 무수히 많기 때문이다.

연구팀이 개발한 MARIOH의 핵심 아이디어는 저차원 상호작용의 다중도(multiplicity) 정보를 활용해 해당 구조로부터 파생될 수 있는 고차원 상호작용의 후보 수를 획기적으로 줄이는 데 있다.

연구팀은 10개의 다양한 실세계 데이터 셋을 대상으로 한 실험 결과, MARIOH는 기존 기술 대비 최대 74% 높은 정확도로 고차원 상호작용을 복원하는 데 성공했다.

신기정 교수는 “MARIOH는 단순화된 연결 정보 정보에만 의존하던 기존 접근에서 벗어나, 실제 세계의 복잡한 연결 관계를 정밀하게 활용할 가능성을 열어 준다”며 “단체 대화나 협업 네트워크를 다루는 소셜 네트워크 분석, 단백질 복합체나 유전자 간 상호작용을 분석하는 생명과학, 다중 뇌 영역 간 동시 활동을 추적하는 뇌과학 등 다양한 분야에서 폭넓게 활용될 수 있을 것”이라고 밝혔다.

이번 연구는 지난 5월 홍콩에서 열린 제41회 IEEE 국제 데이터공학 학회(IEEE International Conference on Data Engineering, IEEE ICDE)에서 발표됐다.

김형중 기자 kimhj@ggilbo.com

저작권자 © 금강일보 무단전재 및 재배포 금지