기존 GPU 대비 연산 속도 4.1배 향상, 에너지 소비 2.2배 절감

▲ ‘PIMBA’를 개발한 KAIST 전산학부 박종세 교수 연구팀. KAIST 제공

KAIST는 전산학부 박종세 교수 연구팀이 미국 조지아 공과대학교 및 스웨덴 웁살라 대학교와 공동연구를 통해, 차세대 인공지능 모델의 두뇌 역할을 하는 ‘AI 메모리 반도체(PIM, Processing-in-Memory)’ 기반 기술 ‘PIMBA’를 개발했다고 17일 밝혔다.

현재 ChatGPT, GPT-4, Claude, Gemini, Llama 등 LLM은 모든 단어를 동시에 보는 ‘트랜스포머(Transformer)’ 두뇌 구조를 기반으로 작동한다. 이에 AI 모델이 커지고 처리 문장이 길어질수록 연산량과 메모리 요구량이 급증해, 속도 저하와 에너지 소모가 주요 문제로 지적돼 왔다. 이를 보완하기 위해 최근 제시된 순차형 기억형 두뇌인 ‘맘바(Mamba)’ 구조는 시간의 흐름에 따라 정보를 처리하는 방식을 도입해 효율을 높였지만, 여전히 메모리 병목 현상(memory bottleneck)과 전력 소모 한계가 남아 있었다.

박종세 교수 연구팀은 트랜스포머와 맘바의 장점을 결합한 ‘트랜스포머–맘바 하이브리드 모델’의 성능을 극대화하기 위해, 연산을 메모리 내부에서 직접 수행하는 새로운 반도체 구조 ‘PIMBA’를 설계했다.

기존 GPU 기반 시스템은 데이터를 메모리 밖으로 옮겨 연산을 수행하지만, PIMBA는 데이터를 옮기지 않고 저장장치 내부에서 바로 계산을 수행한다. 이로써 데이터 이동 시간을 최소화하고 전력 소모를 크게 줄일 수 있다.

그 결과 실제 실험에서 기존 GPU 시스템 대비 처리 성능이 최대 4.1배 향상됐고, 에너지 소비는 평균 2.2배 감소하는 성과를 보였다.

이번 연구 성과는 20일 서울에서 열리는 세계적 컴퓨터 구조 학술대회 ‘제58회 국제 마이크로아키텍처 심포지엄(MICRO 2025)’에서 발표될 예정이며, 앞서 ‘제31회 삼성휴먼테크 논문대상’ 금상을 수상해 우수성을 인정받았다.

김형중 기자 kimhj@ggilbo.com

저작권자 © 금강일보 무단전재 및 재배포 금지